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Abstract—We address the problem of zero-order optimization from noisy observations for an
objective function satisfying the Polyak-Lojasiewicz or the strong convexity condition. Addi-
tionally, we assume that the objective function has an additive structure and satisfies a higher-
order smoothness property, characterized by the Holder family of functions. The additive model
for Holder classes of functions is well-studied in the literature on nonparametric function esti-
mation, where it is shown that such a model benefits from a substantial improvement of the
estimation accuracy compared to the Holder model without additive structure. We study this
established framework in the context of gradient-free optimization. We propose a randomized
gradient estimator that, when plugged into a gradient descent algorithm, allows one to achieve
minimax optimal optimization error of the order dT~(#=1/8 where d is the dimension of the
problem, T is the number of queries and 8 > 2 is the Holder degree of smoothness. We conclude
that, in contrast to nonparametric estimation problems, no substantial gain of accuracy can be
achieved when using additive models in gradient-free optimization.

Keywords: additive model, gradient-free optimization, minimax optimality, Polyak-Lojasiewicz
condition
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1. INTRODUCTION

Additive modeling is a popular approach to dimension reduction in nonparametric estimation
problems [12, 28, 30]. It consists of considering that the unknown function f : R? — R to be esti-
mated from the data has the form f(x) = Z;l:l fi(x;), where z;’s are the coordinates of € R?
and f;’s are unknown functions of one variable. The main property proved in the literature on
additive models in nonparametric regression can be summarized as follows. If each of the func-
tions f; is f-Holder (see Definition 1 below) then the minimax rate of estimation of f, pointwise
or in Lo-norm, is of the order n=#/(28+1) where n is the number of observations [28]. This is in
contrast with the problem of estimating S-Holder functions on R? without any additive structure,
since for such functions the minimax rate is known to be n=#/(26+d) [13, 14, 26, 27]. Thus, there is
a substantial improvement in the rate of estimation when passing from general to additive models
in nonparametric regression setting.

In the present paper, we show that such a dimension reduction property fails to hold in the
context of gradient-free optimization. We consider additive modeling in the problem of minimizing
an unknown function f : R — R when only sequential evaluations of values of f are available, cor-
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818 AKHAVAN, TSYBAKOV

rupted with noise. We assume that f is either strongly convex or satisfies the Polyak—Lojasiewicz
(PL) condition [18, 22] and admits an additive representation as described above, where the com-
ponents f; are S-Holder.

The setting that we consider belongs to the family of gradient-free (or zero-order) stochastic
optimization problems, for which a rich literature is now available, see [1, 2, 4-6, 8, 10, 15, 17,
19-21, 23, 25] and the references therein. These papers did not assume any additive structure
of f. It was proved in [23] that the minimax optimal rate of the optimization error, when f is
B-Holder with 8 > 2 and satisfies the quadratic growth condition, is of the order T—(F=1/8 ag
function of the number of sequential queries T, to within an unspecified factor depending on the
dimension d. Further developments were devoted to exploring the dependency of the minimax rate
on d assuming that f is S-Holder with 8 > 2 and is either strongly convex [1, 4, 15, 21, 25] or
satisfies the PL condition [1, 9]. In the PL case, unconstrained minimization was studied while the
strongly convex case was analyzed both in constrained and unconstrained settings. A considerable
progress was achieved though the complete solution valid for all 8 > 2 is not yet available. There
exists a minimax lower bound for the class of 8-Holder and strongly convex functions, which scales
as dT~P=1/8 (proved in [25] for B = 2 and Gaussian noise and in [2] for all 8 > 2 and more general
noise; see also [1] for a yet more general lower bound). Moreover, the same rate is attained for § = 2
under general conditions on the noise (no independence or zero-mean assumption), see [2]. Thus,
for B =2 we know that the minimax rate is of the order dv/T. For § > 2, the literature provides
different dependencies of the upper bounds on d determined by the geometry of the S-Holder
condition. Thus, for the Holder classes defined by pointwise Taylor approximation the best known
upper bound is of the order d>~'/#T=(#=1/8 when strongly convex functions are considered [21].
On the other hand, for the Holder classes defined by tensor-type conditions one can achieve the rate
d?2=2/B=(6-1/8 hoth for strongly convex functions and for PL functions [1]. Finally, the recent
paper [31], assuming again strong convexity, deals with the class of functions that admit a Lipschitz
Hessian. This represents a type of Holder condition for 8 = 3 and the paper [31] derives the upper
rate dT~2/3. We note that the lower bound of [2] with the rate dT~(#~1/8 is valid for all the above
mentioned Holder classes since this lower bound is obtained on additive functions that belong to
all of them. Thus, the rate dT~(8~1/8 appears to be minimax optimal not only for 8 = 2 but also
for § = 3 under a suitable definition of 3-Hoélder class of strongly convex functions.

The main result of the present paper is to establish an upper bound with the rate d7—(8—1)/8
for the optimization error in the noisy gradient-free setting over the class of g-Holder functions
satisfying the additive model and either the PL condition or the strong convexity condition. To-
gether with the lower bound proved in [2], it implies that dT~=1/8 is the minimax optimal rate
of the optimization error in this setting for all 8 > 2. This conclusion is quite surprising as it goes
against the intuition acquired from the classical results on nonparametric estimation mentioned
above. Indeed, it means that, at least for 5 € {2,3}, there is no improvement in the rate neither
in T nor in d when passing from the general 5-Holder model to the additive S-Holder model. If any,
an improvement can be obtained only in a factor independent of T' and d. Such a property may
be explained by the fact that the optimization setting is easier than nonparametric function esti-
mation in the sense that it aims at estimating a specific functional of the unknown f (namely, its
minimizer) rather than f as a whole object. We also refer to a another somewhat similar fact in the
gradient-free stochastic optimization setting. Specifically, there is no dramatic difference between
the complexity of minimizing a strongly convex function with Lipschitz gradient, which corresponds
to the case 3 = 2 discussed above with the minimax rate dv/T, and the complexity of minimizing a
convex function with no additional properties, for which one can construct an algorithm converging
with the rate between d'®v/T and d''™+/T (up to a logarithmic factor) as recently shown in [7].
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2. PROBLEM SETUP

Let © be a closed convex subset of R?. We consider the problem of minimizing an unknown
function f:R? — R over the set © based on noisy evaluations of f at query points that can be
chosen sequentially depending on the past observations. Specifically, we assume that at round
t € {1,...,T} we can observe two noisy evaluations of f at points z;, z, € R?, i.e.,

Yt = f(zt) + gta y; = f(zé) +£27

where &,&; are scalar noise variables and the query points z;, z, can be chosen depending on

{2i, 2}, y;,¥/}.=1 and on a suitable randomization.

Throughout the paper we assume that f follows the additive model
d
fl@)=>" fi(x)),
j=1

where x;’s are the coordinates of & € R? and f;’s are unknown functions of one variable.
We assume that each of the functions f; : R = R, j =1,...,d, belongs to the class of S-Hélder
functions specified by the following definition, with 8 > 2.

Definition 1. For 3> 0, L > 0, denote by Fg(L) the set of all functions f:R — R that are
¢ = |B] times differentiable and satisfy, for all z, z € R, the condition

l
76— ¥ @) - 2| < Lz - ol (1)

where f(™) is the mth derivative of f and | 3] is the largest integer less than 5. Elements of the
class Fg(L) are referred to as S-Holder functions.

If § > 2 the fact that f; € Fg(L) does not imply that f; € Fo(L), however we will need the
latter condition as well. It will be convenient to use it in a slightly different form given by the next
definition.

Definition 2. The function f : R — R is called L-smooth if it is differentiable on R and there
exists L > 0 such that, for every z, 2’ € R, it holds that

|f'(x) = f'(a")] < Lz —a'].

The class of all L-smooth functions will be denoted by F5(L).

We also assume that f is either an a-strongly convex function or an a-PL function as stated in the
next two definitions.

Definition 3. Let a > 0. The function f : R? — R is called an a-Polyak-Lojasiewicz function
(shortly, a-PL function) if f is differentiable on R% and

2 (f(zr:) — min f(z)) < V()2 for all z € RY,
z€R4

where || - || denotes the Euclidean norm.

Functions satisfying the PL condition are not necessarily convex. The PL condition is a useful
tool in optimization problems since it leads to linear convergence of the gradient descent algorithm
without convexity as shown by Polyak [22]. For more details and discussion on the PL condition
see [16].
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Algorithm 1: Zero-Order Stochastic Projected Gradient
Input: Constraint set O, kernel function K : [-1,1] — R, step size n; > 0 and perturbation parameter
h: >0, fort=1,...,T
Initialization: Generate vectors r¢ = (r¢1,...,7¢d) € R¢ for t = 1,...,T, where the components 1y ;
are independent and distributed uniformly from the interval [—1, 1], and choose x; € ©
fort=1,...,T do
Observe y; = f(xy + hyry) + & and y' = f(xy — hery) + & // query
for j=1,...,d do
| 9t5 = 20 (v — y0) K (re5)
Let gr = (94,1, -5 9t,4); // gradient estimator
x11 = Projg (T — mi9¢); // update

Definition 4. Let a > 0. The function f : R — R is called a-strongly convex if f is differentiable
on R? and o
flx)— f(&) < (Vf(z),z—x) - §||:1: — /|2 for all =, ' € R%.

In order to minimize f, we apply a version of projected gradient descent with estimated gradient
presented in Algorithm 1. Let {n;}7_; be a sequence of positive numbers and let {g;}/_; be a
sequence of random vectors. Consider any fixed x; € R? and let the vectors x; for t = 2,...,T be
defined by the recursion

xi 41 = Projg (¢ — ni94) (2)

where Projg(-) is the Euclidean projection over ©.

In this paper, the gradient estimator g; = (g11,...,grq) € R at round t € {1,...,T} of the
algorithm is defined as follows. For given 8 > 2 and ¢ = |3/, let K : [—1,1] — R be a function such
that

/uK(u)du =1, /qu(u)du =0, j=0,2,3,...,¢, and kg = / [ul?|K (u)|du < oo.  (3)

Assume that x := [ K?(r)dr is finite. Functions K satisfying these conditions are not hard to
construct. In particular, a construction based on Legendre polynomials can be used, see, for
example, [4, 23, 29].

At each round t of the algorithm, we generate a random vector r¢ = (r¢1,...,7¢d) € R?, where
the components 7 ; are independent and distributed uniformly on [—1,1]. For h; > 0, we draw two
noisy evaluations

yr = fay + hyre) + &, vy = fl@ — hury) + &,

and, for j € {1,...,d}, we define

1
915 = gp,- (Wt = Yo K (re ). (4)
We consider the gradient estimator g; = (94,1, .-, 9t.d)- Note that other choices of gradient

estimator can lead to similar results as those that we obtain below, namely estimators based on
finite difference approximations taking into account higher order smoothness. In contrast to (4),
such higher order finite difference schemes have a complicated form and require many queries per
step of the algorithm.

We assume that the noise variables &, &; and the randomizing variables 7 ; satisfy the following.
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Assumption 1. There exists 02 > 0 such that for all ¢ € {1,...,T} the following holds.

(i) The random variables r;; ~ U[—1,1], j = 1,...,d, are independent of x; and conditionally
independent of &, &} given xy,
(i) E[¢7] < o?, E[(&)%] < 0.

Assumption 1 (i) can be considered not as a restriction but as a part of the definition of the
algorithm dealing with the choice of the randomizing variables 7; ;. Randomizations are naturally
chosen independent of all other sources of randomness. For the proofs we need even a weaker
property that we state here as an assumption in order to refer to it in what follows. Note also
that Assumption 1 does not require the noises &, &, to have zero mean. Moreover, they can be
non-random and we do not assume independence between these noises on different rounds of the
algorithm. The fact that convergence of gradient-free algorithms can be achieved under general
conditions on the noise of similar type, not requiring independence and zero means, dates back
to [11, 24].

3. STATEMENT OF THE RESULTS

In this section, we provide upper bounds on the optimization error of the algorithm defined in
Section 2. First, we assume that function f represented by the additive model satisfies the a-PL
condition. Note that imposing this condition on the sum f implies that all the components f;
are PL functions. When dealing with PL functions we consider the problem of unconstrained
minimization and we introduce the notation

"= min f(z).
In what follows, for any positive integer n we denote by [n] the set of positive integers less than or
equal to n.

Theorem 1. Let « > 0, 8 > 2 and L,L > 0. For j € [d], let fj : R — R be such that
fi € Fy(L) N Fz(L). Assume that f : RY — R has the form f(z) = 2?21 fi(x;), and that f is
an a-PL function. Let Assumption 1 hold, and let {x;}]_, be the updates of Algorithm 1 with
© =R?, and

Then,

Bif(er) ~ 1< g () - £+ <A1 <i> T oeatd <L> E) ,

where A1, Ay > 0 depend only on 3 and o2.
Corollary 1. Under the conditions of Theorem 1, if T > (L/a)((L*da)

[@

B[f(er) — /] € Tor (fla) — ) + A (%) -

where A > 0 depends only on B and o>.
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The bounds of Theorem 1 and Corollary 1 show how the rate of convergence depends on the
parameters T,d and a but also on the aspect ratio L/a. Moreover, in Corollary 1 the condition
T > CdP/?, where C > 0 is a constant, does not bring an additional restriction when 2 < 8 < 3
since the condition is weaker than giving the range of T', for which the bound makes sense. Indeed,
for 2 < 8 < 3 the bound is greater than a constant independent of T, d if T < CdP/2.

Next, we study the optimization error of the algorithm defined in Section 2 under the assumption
that the objective function is a-strongly convex. Unlike the case of PL functions, we consider here
the problem of constrained minimization

min f(z),

where © is a compact convex subset of R%.

Theorem 2. Leta >0, 3> 2 and L,L > 0. Forj € [d], let f; : R — R be such that f; € F(L)N
Fs(L). Assume that f:R? — R has the form f(z) = E?:l fi(xj), and that f is an o-strongly
convexr function on a compact convexr subset © of R such that maxgeo |V f(z)|| < G. Let As-
sumption 1 hold, and let {x;}}_, be the updates of Algorithm 1 with

1
B 4 b — 3 ko? \
" AT 1) T3z

Consider the weighted estimator

9 T
BT = e 3ty
Then, for any x € © we have
_ 18G?d  d 2 _ 2\ _p-1
E[f(zr) - f(z)] < T +E<A1Lﬁ + AgdL*(LT) ﬁ)T 7

where A1, Ay > 0 depend only on 5 and o2.
Corollary 2. Under the conditions of Theorem 2, if T > (dL)?/2L=2 then

B[/(@r) —min f(z)] <ASTF,

where A > 0 does not depend on T,d and «.

Similarly to Corollary 1, we may note that that for 2 < 8 < 3 the condition T" > CdP/? in Corol-
lary 2, where C > 0 is a constant, does not bring an additional restriction but indicates the mean-
ingful range of T since the bound is greater than a constant when 7' < Cd?/2.

Remark 1. In view of strong convexity, Theorem 2 and Corollary 2 immediately imply the
corresponding bounds on the estimation error E[||Z1 — z*||?], where * is the minimizer of f on
©. Thus, under the assumptions of Corollary 2 we have

d __B-1
E[|@r — «*|*] <2A5T 7,
o

where A > 0 is the constant from Corollary 2.
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It follows from Corollary 2 and the proofs of the lower bounds in [1, 2] that, under non-restrictive

conditions on the parameters of the problem, the rate gT -5 in Corollary 2 is minimax optimal
on the class of additive functions f satisfying the assumptions of Theorem 2. The lower bound that
we need is not explicitly stated in [1, 2] but follows immediately from the proofs in those papers
since the lower bounds in [1, 2] are obtained on additive functions. For completeness, we provide

here the statement of the lower bound for additive functions based on [1].

Consider all strategies of choosing the query points as z; = ®4( (zz,yz)f_i , (zz,yz)f },Tt) and

=& ((zi,4:)'C } , (zz,yz)f_i ,7¢) for t>2, where ®,/s and ®}’s are measurable functions,
21,2, € R? are any random variables, and {7} is a sequence of random Varlables with values
in a measurable space (Z,U), such that 7; is independent of ((zz,yz)f;i ,(z 7J,yz)z_ ). We denote
by II7 the set of all such strategies of choosing query points up to ¢ =7T. The class IIp includes
the sequential strategy of the algorithm of Section 2 with the gradient estimator (4). In this case,
Tt =71y, 2t = Ty + lyry and z[ = @y — hyry.

The lower bound of [1] that we are using here is proved under the following assumption on the
noises (£,€,). Let H?(-,-) be the squared Hellinger distance defined, for two probability measures
P, P’ on a measurable space ({2,.4), as

H*(P,P') & /(ﬁ —Vap/)?

Assumption 2. For every t > 1, the following holds:
e The cumulative distribution function F; : R? — R of random variable (&, &) is such that

HQ(PF,&(-,-)J PFt(--H),'-H))) < IO/U2 ) "U‘ < Vo, (5)

for some 0 < Iy < 00, 0 < wg < oo. Here, Pp(. ) denotes the probability measure corresponding
to the c.d.f. F(-,-).
e The random variable (&,£]) is independent of ((z;,v:)!Z1, (25,4021, 71).
Let © = {x ¢ R? : ||z|| < 1}. Fix a,L,L > 0,G > o, B8 > 2, and denote by F the set of all func-
tions f that satisfy the assumptions of Theorem 2 and attain their minimum over R? in ©.

Theorem 3. Let © = {x € R? : ||z|| < 1} and let Assumption 2 hold. Assume that o >
T-124Y8 and T > dP. Then, for any estimator & based on the observations ((z,y), (24, y}),t =
1,...,T), where ((z¢,2,),t =1,...,T) are obtained by any strategy in the class llp we have
d T_%

;ggE[f(ii' r) — min f(z)] > C~

: (6)

where C' > 0 is a constant that does not depend of T, d, and «.

Theorem 3 follows immediately from the proof of Theorem 22 in [1] since the family of functions
used there belongs to the class F. The lower bound of Theorem 22 in [1] has the form

d d
C'min (max(a TYABY
9 9 \/T a )

_bB—-1
which reduces to C gT A under the assumptions on 7', d and « used in Theorem 3.

Remark 2. Since the strong convexity and the PL property hold for each additive component
of f, another possible approach would be to run the procedure component-wise (minimize separately
each component f;). However, it leads to a worse result. Indeed, in this case we need to make at
each step 2d queries in parallel (two queries for each component) and thus can make only ~ T'/d
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824 AKHAVAN, TSYBAKOV

steps if the total budget of queries is T'. At the end, applying Theorems 1 or 2 in the one-dimensional
case, for each component we obtain the error in 7' and d of the order (7'/d)~(#~1/#. This rate

cannot be improved as follows from the one-dimensional instance of Theorem 3. Summing up over
the d components, the overall error will be of the order d(T/d)_(ﬁ_l)/ﬁ = 2~YB-B-1/B that is,
the error will depend on d in a sub-optimal way.

4. PROOFS

We start by proving some auxiliary lemmas.

Lemma 1. Let f : RY — R be a differentiable function such that |V f(x) — Vf(z')|| < L|z — ='||
for all x,x' € R, where L > 0. Let Assumption 1 hold and let {x;}_; be the updates of Algo-
rithm 1 with © =R9. Then, for all t € [T] we have

T 2
B/ (@)l < f(@) — ZIVH@)I? + 2B lgded - V@I + "B gl . (7

Proof. The assumption on f implies that

T 2
Fl@en) = Fl—mae) < Fwo) — (V) 0 + L g,

By adding and subtracting 7|V f(z)||* we obtain

T2
Flaa) < fla) — mlV I @Ol — m(V (). g0~ V@) + T g,

Taking the conditional expectation gives

T 2
B [f(ze)lwd] < fwe) — V5 (@)? —ndV (), Blada] - Vi) + 2B [lgi))a]

T 2
< @) — VI @I + 0l VS @) 1B gl — V(@] + 2 gl 2]

The lemma follows by using the inequality 2ab < a? + b2, Va,b € R.

Lemma 2. For j € [d], let f; : R — R be such that f; € Fg(L), where B > 2 and L > 0. Assume
that f : R? — R satisfies the additive model f(x) = Z;l:l fj(x;). Let Assumption 1(i) hold. Then,
for allt € [T] we have

1B lgile] = V1 (0) | < mpLVdh ™"
Proof. Using Assumption 1(i) for any je€[d] and te[T] we have E(K(r;;)) =0,
E [ftK(Tt,j)kBt] =0and E [&K(rm)\wt] = 0. ThllS,

E (gt j]x] = LE [(fi(zej + hereg) — fi(wey — hurey)) K (1) |22]

2hy
1
+ ﬁ Z E [(fm(xt,m + htrt,m) — fm(xt,m — htrt,m))K(rtJ'Mmt]
b mtj
1
= 2—htE [(fi(@ej 4+ hare ) — fi(aey — here ) K (14 5) 2]

where we have used the fact that E(K(r;;)) =0 and r; is independent of 7 ,,, for m # j, and
of ;. From Taylor expansion we obtain that

1 W .
Fi(@eg +herej) — filae — hureg)) = fi(@eg)re; + e > ﬁf} )(xt,j)m,j

1<m<¥, m odd :
R(hirej) — R(=here 5)
2hy ’

1
T

_l’_
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where |R(—hrej)|, |R(here 5)| < L|rt7j|f8hf. Multiplying both sides of this inequality by K (r ;) and
taking the conditional expectation implies

[ [gelwe] = fj(@i)] < LB [[rogl K (ro)] b~ = ms Db ™"
The result of the lemma follows from this inequality and the fact that

IBlgiled) = V(@) < Vd max [E gy |z = fj(ze,)]

Lemma 3. For j € [d], let fj: R — R be such that f; € F4(L), where L >0. Assume that
f:R? = R satisfies the additive model f(x) = 2?21 fi(xj). Let Assumption 1 hold. Then, for

all t € [T] we have
d (
Proof. For i € [d] we define

Gi = filwe; + hrei) — fi(wes — hares).

wlw
oo

E [|g:|e:] < 2

0.2
(dL?h? + 8|V f (1)) + ) :
We have

E [gf,j‘wt} = 4h2

2
(ZG + & — ) (Tt,j)‘wtj| .

Note that r;; and —r;; have the same distribution. Therefore, E[G;|z¢] = 0 and we can write

sl (£)

2

+& + (&) )) (Tt,j)‘wt}

3 302K
< -5E ZG§K2(W,J~)+ Z GG (rog)|2e | + S
Ah; Li=1 i,k=1,i#k 2h;

3 302K

+

= —E ZGz ’I"tJ ‘.’,Ut

Le=1

22
Since f; € F5(L) we have that, for all i € [d],
G? = ((fi(weg + hares) — flxes) — fl@ei)hares) — (fi(zes — hres) — (i) + fl(zes) heres)
+ 2fi/($t,i)ht7"t,i)2
3 ((fi(i’ti + hereg) — fes) — fi/(xt,i)htrt,i)Q + (filwes — herei) — flae) + fi/(xt,i)htrt,i)Q
+ 4 (fi (@) hare i) 2)
7).

9 [(dL? 302k
E [gt%j\a:t} < 1 (—h2 +4Z fl xtz ) + W,
t

<3 ( hi +4 (f1(

Thus,

i=1

which implies the lemma.
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Lemma 4. Forj € [d], let fj : R — R be such that f; € F5(L)NFz(L), where 8 > 2 and L, L > 0.
Assume that f : R — R satisfies the additive model f(x) = Z;l:l fi(x;). Let Assumption 1 hold.

Assume that {x;}1_, are updates of Algorithm 1 with © = R? and with the gradient estimators
defined by (4). Then, for all t € [T] we have

B[/ (1)) < f(@) — 5 (L—9Ldwn,) |V (@)

3 5-1\2 = 3Ln} 0_2 3L% ,

Proof. The result follows by combining Lemmas 1, 2 and 3.

Lemma 5. For a > 0 assume that f is an a-strongly convex function. Assume that {z;}1 | are
the updates of Algorithm 1. Then, for allt € [T] and x € O, we have

Pl — 7)< @n)" (Ja — @l ~ B [z — 2lPle]) + 1V (@) — Blgded

e 2 _a o2
+ 5B |llgil*l] - Fllwe — 2]

Proof. Fix * € ©. Then, by the contraction property of the Euclidean projection we have
041 — 2 < [l — gt — |- Equivalently,

_ Tt
(g, 2 — @) < (2m) " (|| — 2] = 21 —2f?) + 5\\gtll2-

Let a; = ||z; — x||?. Since f is an a-strongly convex function we have
a
fla) = f(®) < (Vo) 20 — ) — S
e
=gz —x) + (Vf(2e) — gt 2 — ) — S
_ e
< @2m) Nay — apg1) + (V f(@e) — gr 0 — ) + %HgtHQ g

Taking the conditional expectation given x; and using the inequality ab < a?/\ + \b?/4 valid for
all a,b € R and A > 0 we deduce that

2

— «
< (2m) (o = Bl lei]) + IV £ (@) - Elgile| |z — 2]l + TE [llgelPl2] - Sau

f(@) = f(@) < @) @~ E o lai]) + (9 (@) — Elgilai] @ — @) + 2E [lgi)2e] - Sa

_ 1 «
< (2007 (00~ Blavilz) 4~V () - Blgded | + 2B [lgle] - La.

Proof of Theorem 1. Since n; < 1/(18Ldk) from Lemma 4 we have

2 3Ln? o2 3L%d
E [f (zep)|ed] < f(z0) — DIV @I + L (Ligh ™)+ =Tond | 25+ =207 )
4 2 4 h2 4

Taking the expectation from both sides of this inequality and using the fact that f is an «-PL
function we obtain

2 2

e’ nt 8-1\2 3D7t o 3L2d 9
< - - - -
5t-|—1 X 515 (1 D) ) + 9 d (L/i/ght ) + 4 Kkd h% + 1 ht 5 (8)
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where 6; = E[f(z:) — f*]. Let Tp = |72Ldk/c|. Note that

827
1

_ it <T,
Ji8Lax NPT
Mt 4

— if t > Tp.
at
We consider separately the cases T > Ty and T < Tp.

If T' > Ty, then for ¢ > T we have n, = 4/(at) and we can write

2 d 5-1\2 3L
041 < 0 (1 - Z) + s (2 (Lﬁght ) +

o? 3L
i Z —h2 ‘
at a (h? + t
Substituting here h; = ( 3L . _ko?

4
L
e )2
ot 2L2n§) # gives

B—1
2 d L\ ? L3d
Opr1 <O (11— = — | A; [ =
t+1 t( t>+at<3< )

1
L B
ALl =
ot ) T (atL2> )
/
Lemma 32| leads to the bound

1/8 L
where Az = 6 ((2/@%/3)(/@02)5_1> and Ay = 9 (3/@02/(25%)) /4. Since T > Ty, applying [1,

_o\ B _
2Ty d{ BAL [ L\ ° BAy L3d
o < —=6 — —
T T TO+1+a<B+1<aT> +

P\
28+1 T \aTL? ’
If Ty = 0 then the proof is complete for the case T > Tj.
ne = 1/(18Ldk) and hy = (3L

Kko? L
oT " 212 H%

Otherwise, for any t < 7p, we have
)28. Note that

4 e < 4
(To + D SIS Toa’
and from (8) we deduce that, for all ¢ < Tj,

_\ Bzt 1

2 2d L\ ” _Bs1 T8

01 <0 (1 — — | A3 | — T 8 —
il t( T0+1)+aTo< 3(04) ( + )

1
L B
Al— | —= .
o | T <aTL2> )
Note that 1 —2/(Tp + 1) < 1. Thus, by taking into account the definition of Ty and the fact that
T > Ty we get

B—1 1
2T, 144Ldk 4d L\ 7?7 L*d( L \°*
b S ———61 + — | 2A5 | — Ay— | —— .
T "ttt aT 1+a< 3<aT> +Ap <aTL2> )
Therefore,
144Ld
5T\ "

where A; = As (ﬁ/(ﬁ + 1) —1—8) and Ay = Ay (ﬁ/(?ﬁ—l— 1) +4)
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Consider now the case T' < Tp. Then from (8) we get that, for all t < T,

_ B=1 1 _ _ 1

2 2d L) 7 _B-1 T8 L3d L \7?
Sp1 <O (11— (A= T F +— A — .
1 t( T0+1)+aTO< 3<a> ( +T0>+ iy <aTL2> )

Thus,

B—1 1

2 \T 24 L\ *? L3d L \?
Spa1 <0 A A .
T+ 1( T0+1> +a< 3<aT> A <aTL2> )

Since (1 — AT < exp(=AT) < 1/(\T) for all T, A > 0, we deduce from the previous display that

B—1 1
To+1 2d L\ 7?7 L3d( L \°*
ora1 < 51 + 2A A== .
T+l o 01T ( 3( T) AT (aTL2> )

By using the fact that A + 1 < 2\ for all A > 1 we finally get

B—1

1
2Ty 2d 2L e 2L3d 2L g
5141 < 54+ = [ 2A [ ———— A
T T+11+a( 3<a(T+1)> T\ e

_ _ B—1 _ _ 1
- 144Ld/<;5 +g A L E LA L3d L 2
SaT+D) T a T T+ ) T+1 \ a(T +1)L2 ’

where A; = 2 ﬁ A3 and Ay = 2 A4
Proof of Theorem 2. Fix x € ©. By Lemma 5 we have

ar — Efagy1|e]

fl@) = fl@) < + 2195 @) ~ Bladl? + LB [lgulPle] — Sa,

277t 4
where a; = ||&; — x||*>. Using Lemmas 2 and 3 and the assumption that maxzce |V f(z)| < G we
obtain
a; — E [at+1\wt] d 8—1 37],5 3 2,9 2 2 [0
Flae) — fla) < o + = (kL) + Srnd (dL h2 + 8G ) 2z~ 3

Let by = E [||z; — x||?]. Using the definition n; = 4/(a(t+1)) and taking the expectation we obtain

3

B [f (@) = f(@)] < 7 (¢ (by — byr) = br) + gwmf‘lf T 1) ( (d227 +867) + h2>

Summing up both sides of this inequality form 1 to T" and using the fact that

T
Zt((t +1) (bt — brr1) — b)) <O
t=1

TtE <@ t(kgLh?~1)2 3t dL?h? + 8G?) + o
SR f () — f@)] < 33 maLbi ™ + 5 2 (az2z +86) + ¢ T

t=1 t=1
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1
Substituting here h; = (% %)Qﬁ yields
B

Sl - o) < XL+ 57 (et} aai () ),
=t t=1

5-1 B+1 2 . . .
5K B (0/kg)®.  Using the inequality

where A = 2(3r02/2) and Ay = (1/2)(3/2)° 7 &
SETF < (B/(B - )T we find

=R v

9G2dT d

> BA
+E<A3L5+ B2

51

T — 2 B+1
S UE[f (@) - f()] < arrry ¥ 1%
t=1

a
Dividing both sides of this inequality by 7(T'+ 1)/2 and applying Jensen’s inequality we finally get

18G%d d 2 =9 _2\ -1
— B B B
= +a<A1L + AdL*(LT) %) T™'F

where A} = 2A3 and Ay = 28A4/(B — 1).

E[f(zr) - f(z)] <

FUNDING

The research of Arya Akhavan was funded by UK Research and Innovation (UKRI) under the
UK government’s Horizon Europe funding guarantee [grant number EP/Y028333/1].

REFERENCES

1. Akhavan, A., Chzhen, E., Pontil, M., and Tsybakov, A.B., Gradient-free optimization of highly smooth
functions: improved analysis and a new algorithm, J. Mach. Learn. Res., 2024, vol. 25, no. 370, pp. 1-50.

2. Akhavan, A., Pontil, M., and Tsybakov, A., Exploiting higher order smoothness in derivative-free opti-
mization and continuous bandits, Adv. Neural Inf. Process. Syst., 2020, vol. 33, pp. 9017-9027.

3. Akhavan, A., Pontil, M., and Tsybakov, A., Distributed zero-order optimization under adversarial noise,
Adv. Neural Inf. Process. Syst., 2021, vol. 34, pp. 10209-10220.

4. Bach, F. and Perchet, V., Highly-smooth zero-th order online optimization, Proc. 29th Annu. Conf.
Learn. Theory, 2016, pp. 1-27.

5. Balasubramanian, K. and Ghadimi, S., Zeroth-order nonconvex stochastic optimization: Handling con-
straints, high dimensionality, and saddle points, Found. Comput. Math., 2021, pp. 1-42.

6. Fabian, V., Stochastic approximation of minima with improved asymptotic speed, Ann. Math. Stat.,
1967, vol. 38, no. 1, pp. 191-200.

7. Fokkema, H., van der Hoeven, D., Lattimore, T., and Mayo, J.J., Online Newton method for bandit
convex optimisation, 2024, https://arxiv.org/abs/2406.06506.

8. Gasnikov, A., Lagunovskaya, A., Usmanova, I., and Fedorenko, F., Gradient-free proximal methods with
inexact oracle for convex stochastic nonsmooth optimization problems on the simplex, Autom. Remote
Control, 2016, vol. 77, no. 11, pp. 2018-2034.

9. Gasnikov, A., Lobanov, A.V., and Stonyakin, F.S., Highly smooth zeroth-order methods for solving
optimization problems under the PL condition, Comput. Math. Math. Phys., 2024, vol. 64, pp. 739-770.

10. Ghadimi, S. and Lan, G., Stochastic first- and zeroth-order methods for nonconvex stochastic program-
ming, SIAM J. Optim., 2013, vol. 23, no. 4, pp. 2341-2368.

11. Granichin, O.N., A stochastic approximation procedure with disturbance at the input, Autom. Remote
Control, 1992, vol. 53, no. 2, pp. 232-237.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 9 2025



830 AKHAVAN, TSYBAKOV

12. Hastie, T. and Tibshirani, R., Generalized additive models, Stat. Sci., 1986, vol. 1, no. 3, pp. 297-310.

13. Ibragimov, I.A. and Khas’minskii, R.Z., Bounds for the risks of non-parametric regression estimates,
Theory Probab. Appl., 1982, vol. 27, pp. 84-99.

14. Ibragimov, I.A. and Khas’minskii, R.Z., Statistical Estimation: Asymptotic Theory, Springer, 1981.

15. Jamieson, K.G., Nowak, R., and Recht, B., Query complexity of derivative-free optimization, Adv.
Neural Inf. Process. Syst., 2012, vol. 26, pp. 2672—2680.

16. Karimi, H., Nutini, J., and Schmidt, M., Linear convergence of gradient and proximal-gradient methods
under the Polyak-Lojasiewicz condition, Mach. Learn. Knowl. Discov. Databases, 2016, pp. 795-811.

17. Kiefer, J. and Wolfowitz, J., Stochastic estimation of the maximum of a regression function, Ann. Math.
Stat., 1952, vol. 23, pp. 462-466.

18. Lojasiewicz, S., A topological property of real analytic subsets, Coll. CNRS, E'qu, Dériv. Partielles,
1963, vol. 117, pp. 87-89.

19. Nemirovsky, A.S. and Yudin, D.B., Problem Complexity and Method Efficiency in Optimization, Wiley,
1983.

20. Nesterov, Yu. and Spokoiny, V., Random gradient-free minimization of convex functions, Found. Comput.
Math., 2017, vol. 17, no. 2, pp. 527-566.

21. Novitskii, V. and Gasnikov, A., Improved exploitation of higher order smoothness in derivative-free
optimization, Optim. Lett., 2022, vol. 16, pp. 2059-2071.

22. Polyak, B.T., Gradient methods for minimizing functionals, Comput. Math. Math. Phys., 1963, vol. 3,
no. 4, pp. 864-878.

23. Polyak, B.T. and Tsybakov, A.B., Optimal order of accuracy of search algorithms in stochastic opti-
mization, Probl. Inf. Transm., 1990, vol. 26, no. 2, pp. 45-53.

24. Polyak, B.T. and Tsybakov, A.B., On stochastic approximation with arbitrary noise (the KW-case),
Adv. Sov. Math., Amer. Math. Soc., 1992, vol. 12, pp. 107-113.

25. Shamir, O., On the complexity of bandit and derivative-free stochastic convex optimization, Proc. 30th
Annu. Conf. Learn. Theory, 2013, pp. 1-22.

26. Stone, C.J., Optimal rates of convergence for nonparametric estimators, Ann. Stat., 1980, vol. 8,
pp. 1348-1360.

27. Stone, C.J., Optimal global rates of convergence for nonparametric regression, Ann. Stat., 1982, vol. 10,
pp- 1040-1053.

28. Stone, C.J., Additive regression and other nonparametric models, Ann. Stat., 1985, vol. 13, pp. 689-705.
29. Tsybakov, A.B., Introduction to Nonparametric FEstimation, Springer, 2009.
30. Wood, S.N., Generalized Additive Models, Boca Raton, Chapman and Hall/CRC, 2017.

31. Yu, Q., Wang, Y., Huang, B., Lei, Q., and Lee, J.D., Stochastic zeroth-order optimization under strongly
convexity and Lipschitz Hessian: Minimax sample complexity, Adv. Neural Inf. Process. Syst., 2024,
vol. 37, pp. 99564-99600.

This paper was recommended for publication by P.S. Shcherbakov, a member of the Editorial
Board

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 9 2025



