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Abstract—We address the problem of zero-order optimization from noisy observations for an
objective function satisfying the Polyak–�Lojasiewicz or the strong convexity condition. Addi-
tionally, we assume that the objective function has an additive structure and satisfies a higher-
order smoothness property, characterized by the Hölder family of functions. The additive model
for Hölder classes of functions is well-studied in the literature on nonparametric function esti-
mation, where it is shown that such a model benefits from a substantial improvement of the
estimation accuracy compared to the Hölder model without additive structure. We study this
established framework in the context of gradient-free optimization. We propose a randomized
gradient estimator that, when plugged into a gradient descent algorithm, allows one to achieve
minimax optimal optimization error of the order dT−(β−1)/β, where d is the dimension of the
problem, T is the number of queries and β � 2 is the Hölder degree of smoothness. We conclude
that, in contrast to nonparametric estimation problems, no substantial gain of accuracy can be
achieved when using additive models in gradient-free optimization.

Keywords : additive model, gradient-free optimization, minimax optimality, Polyak-�Lojasiewicz
condition
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1. INTRODUCTION

Additive modeling is a popular approach to dimension reduction in nonparametric estimation
problems [12, 28, 30]. It consists of considering that the unknown function f : Rd → R to be esti-
mated from the data has the form f(x) =

∑d
j=1 fj(xj), where xj’s are the coordinates of x ∈ R

d

and fj’s are unknown functions of one variable. The main property proved in the literature on
additive models in nonparametric regression can be summarized as follows. If each of the func-
tions fj is β-Hölder (see Definition 1 below) then the minimax rate of estimation of f , pointwise
or in L2-norm, is of the order n−β/(2β+1), where n is the number of observations [28]. This is in
contrast with the problem of estimating β-Hölder functions on R

d without any additive structure,
since for such functions the minimax rate is known to be n−β/(2β+d) [13, 14, 26, 27]. Thus, there is
a substantial improvement in the rate of estimation when passing from general to additive models
in nonparametric regression setting.

In the present paper, we show that such a dimension reduction property fails to hold in the
context of gradient-free optimization. We consider additive modeling in the problem of minimizing
an unknown function f : Rd → R when only sequential evaluations of values of f are available, cor-
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818 AKHAVAN, TSYBAKOV

rupted with noise. We assume that f is either strongly convex or satisfies the Polyak–�Lojasiewicz
(PL) condition [18, 22] and admits an additive representation as described above, where the com-
ponents fj are β-Hölder.

The setting that we consider belongs to the family of gradient-free (or zero-order) stochastic
optimization problems, for which a rich literature is now available, see [1, 2, 4–6, 8, 10, 15, 17,
19–21, 23, 25] and the references therein. These papers did not assume any additive structure
of f . It was proved in [23] that the minimax optimal rate of the optimization error, when f is
β-Hölder with β � 2 and satisfies the quadratic growth condition, is of the order T−(β−1)/β as
function of the number of sequential queries T , to within an unspecified factor depending on the
dimension d. Further developments were devoted to exploring the dependency of the minimax rate
on d assuming that f is β-Hölder with β � 2 and is either strongly convex [1, 4, 15, 21, 25] or
satisfies the PL condition [1, 9]. In the PL case, unconstrained minimization was studied while the
strongly convex case was analyzed both in constrained and unconstrained settings. A considerable
progress was achieved though the complete solution valid for all β � 2 is not yet available. There
exists a minimax lower bound for the class of β-Hölder and strongly convex functions, which scales
as dT−(β−1)/β (proved in [25] for β = 2 and Gaussian noise and in [2] for all β � 2 and more general
noise; see also [1] for a yet more general lower bound). Moreover, the same rate is attained for β = 2
under general conditions on the noise (no independence or zero-mean assumption), see [2]. Thus,
for β = 2 we know that the minimax rate is of the order d

√
T . For β > 2, the literature provides

different dependencies of the upper bounds on d determined by the geometry of the β-Hölder
condition. Thus, for the Hölder classes defined by pointwise Taylor approximation the best known
upper bound is of the order d2−1/βT−(β−1)/β when strongly convex functions are considered [21].
On the other hand, for the Hölder classes defined by tensor-type conditions one can achieve the rate
d2−2/βT−(β−1)/β both for strongly convex functions and for PL functions [1]. Finally, the recent
paper [31], assuming again strong convexity, deals with the class of functions that admit a Lipschitz
Hessian. This represents a type of Hölder condition for β = 3 and the paper [31] derives the upper
rate dT−2/3. We note that the lower bound of [2] with the rate dT−(β−1)/β is valid for all the above
mentioned Hölder classes since this lower bound is obtained on additive functions that belong to
all of them. Thus, the rate dT−(β−1)/β appears to be minimax optimal not only for β = 2 but also
for β = 3 under a suitable definition of 3-Hölder class of strongly convex functions.

The main result of the present paper is to establish an upper bound with the rate dT−(β−1)/β

for the optimization error in the noisy gradient-free setting over the class of β-Hölder functions
satisfying the additive model and either the PL condition or the strong convexity condition. To-
gether with the lower bound proved in [2], it implies that dT−(β−1)/β is the minimax optimal rate
of the optimization error in this setting for all β � 2. This conclusion is quite surprising as it goes
against the intuition acquired from the classical results on nonparametric estimation mentioned
above. Indeed, it means that, at least for β ∈ {2, 3}, there is no improvement in the rate neither
in T nor in d when passing from the general β-Hölder model to the additive β-Hölder model. If any,
an improvement can be obtained only in a factor independent of T and d. Such a property may
be explained by the fact that the optimization setting is easier than nonparametric function esti-
mation in the sense that it aims at estimating a specific functional of the unknown f (namely, its
minimizer) rather than f as a whole object. We also refer to a another somewhat similar fact in the
gradient-free stochastic optimization setting. Specifically, there is no dramatic difference between
the complexity of minimizing a strongly convex function with Lipschitz gradient, which corresponds
to the case β = 2 discussed above with the minimax rate d

√
T , and the complexity of minimizing a

convex function with no additional properties, for which one can construct an algorithm converging
with the rate between d1.5

√
T and d1.75

√
T (up to a logarithmic factor) as recently shown in [7].
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2. PROBLEM SETUP

Let Θ be a closed convex subset of Rd. We consider the problem of minimizing an unknown
function f : Rd → R over the set Θ based on noisy evaluations of f at query points that can be
chosen sequentially depending on the past observations. Specifically, we assume that at round
t ∈ {1, . . . , T} we can observe two noisy evaluations of f at points zt,z

′
t ∈ R

d, i.e.,

yt = f(zt) + ξt, y′t = f(z′
t) + ξ′t,

where ξt, ξ
′
t are scalar noise variables and the query points zt,z

′
t can be chosen depending on

{zi,z′
i, yi, y

′
i}t−1

i=1 and on a suitable randomization.

Throughout the paper we assume that f follows the additive model

f(x) =
d∑

j=1

fj(xj),

where xj ’s are the coordinates of x ∈ R
d and fj’s are unknown functions of one variable.

We assume that each of the functions fj : R → R, j = 1, . . . , d, belongs to the class of β-Hölder
functions specified by the following definition, with β � 2.

Definition 1. For β > 0, L > 0, denote by Fβ(L) the set of all functions f : R → R that are
� = �β� times differentiable and satisfy, for all x, z ∈ R, the condition

∣∣∣∣f(z)− �∑
m=0

1

m!
f (m)(x)(z − x)m

∣∣∣∣ � L|z − x|β, (1)

where f (m) is the mth derivative of f and �β� is the largest integer less than β. Elements of the
class Fβ(L) are referred to as β-Hölder functions.

If β > 2 the fact that fj ∈ Fβ(L) does not imply that fj ∈ F2(L), however we will need the
latter condition as well. It will be convenient to use it in a slightly different form given by the next
definition.

Definition 2. The function f : R → R is called L̄-smooth if it is differentiable on R and there
exists L̄ > 0 such that, for every x, x′ ∈ R, it holds that

|f ′(x)− f ′(x′)| � L̄|x− x′|.

The class of all L̄-smooth functions will be denoted by F ′
2(L̄).

We also assume that f is either an α-strongly convex function or an α-PL function as stated in the
next two definitions.

Definition 3. Let α > 0. The function f : Rd → R is called an α-Polyak–�Lojasiewicz function
(shortly, α-PL function) if f is differentiable on R

d and

2α

(
f(x)− min

z∈Rd
f(z)

)
� ‖∇f(x)‖2 for all x ∈ R

d,

where ‖ · ‖ denotes the Euclidean norm.

Functions satisfying the PL condition are not necessarily convex. The PL condition is a useful
tool in optimization problems since it leads to linear convergence of the gradient descent algorithm
without convexity as shown by Polyak [22]. For more details and discussion on the PL condition
see [16].
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Algorithm 1: Zero-Order Stochastic Projected Gradient

Input: Constraint set Θ, kernel function K : [−1, 1] → R, step size ηt > 0 and perturbation parameter
ht > 0, for t = 1, . . . , T

Initialization: Generate vectors rt = (rt,1, . . . , rt,d) ∈ R
d for t = 1, . . . , T , where the components rt,i

are independent and distributed uniformly from the interval [−1, 1], and choose x1 ∈ Θ
for t = 1, . . . , T do

Observe yt = f(xt + htrt) + ξt and y′ = f(xt − htrt) + ξ′t; // query

for j = 1, . . . , d do
gt,j =

d
2ht

(yt − y′t)K(rt,j)

Let gt = (gt,1, . . . , gt,d); // gradient estimator

xt+1 = ProjΘ(xt − ηtgt); // update

Definition 4. Let α > 0. The function f : Rd → R is called α-strongly convex if f is differentiable
on R

d and
f(x)− f(x′) � 〈∇f(x),x− x′〉 − α

2
‖x− x′‖2 for all x,x′ ∈ R

d.

In order to minimize f , we apply a version of projected gradient descent with estimated gradient
presented in Algorithm 1. Let {ηt}Tt=1 be a sequence of positive numbers and let {gt}Tt=1 be a
sequence of random vectors. Consider any fixed x1 ∈ R

d and let the vectors xt for t = 2, . . . , T be
defined by the recursion

xt+1 = ProjΘ (xt − ηtgt) , (2)

where ProjΘ(·) is the Euclidean projection over Θ.

In this paper, the gradient estimator gt = (gt,1, . . . , gt,d) ∈ R
d at round t ∈ {1, . . . , T} of the

algorithm is defined as follows. For given β � 2 and � = �β�, let K : [−1, 1] → R be a function such
that ∫

uK(u)du = 1,

∫
ujK(u)du = 0, j = 0, 2, 3, . . . , �, and κβ ≡

∫
|u|β|K(u)|du < ∞. (3)

Assume that κ :=
∫
K2(r)dr is finite. Functions K satisfying these conditions are not hard to

construct. In particular, a construction based on Legendre polynomials can be used, see, for
example, [4, 23, 29].

At each round t of the algorithm, we generate a random vector rt = (rt,1, . . . , rt,d) ∈ R
d, where

the components rt,j are independent and distributed uniformly on [−1, 1]. For ht > 0, we draw two
noisy evaluations

yt = f(xt + htrt) + ξt, y′t = f(xt − htrt) + ξ′t,

and, for j ∈ {1, . . . , d}, we define

gt,j =
1

2ht
(yt − y′t)K(rt,j). (4)

We consider the gradient estimator gt = (gt,1, . . . , gt,d). Note that other choices of gradient
estimator can lead to similar results as those that we obtain below, namely estimators based on
finite difference approximations taking into account higher order smoothness. In contrast to (4),
such higher order finite difference schemes have a complicated form and require many queries per
step of the algorithm.

We assume that the noise variables ξt, ξ
′
t and the randomizing variables rt,j satisfy the following.
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Assumption 1. There exists σ2 > 0 such that for all t ∈ {1, . . . , T} the following holds.

(i) The random variables rt,j ∼ U [−1, 1], j = 1, . . . , d, are independent of xt and conditionally
independent of ξt, ξ

′
t given xt,

(ii) E[ξ2t ] � σ2, E[(ξ′t)2] � σ2.

Assumption 1 (i) can be considered not as a restriction but as a part of the definition of the
algorithm dealing with the choice of the randomizing variables rt,j . Randomizations are naturally
chosen independent of all other sources of randomness. For the proofs we need even a weaker
property that we state here as an assumption in order to refer to it in what follows. Note also
that Assumption 1 does not require the noises ξt, ξ

′
t to have zero mean. Moreover, they can be

non-random and we do not assume independence between these noises on different rounds of the
algorithm. The fact that convergence of gradient-free algorithms can be achieved under general
conditions on the noise of similar type, not requiring independence and zero means, dates back
to [11, 24].

3. STATEMENT OF THE RESULTS

In this section, we provide upper bounds on the optimization error of the algorithm defined in
Section 2. First, we assume that function f represented by the additive model satisfies the α-PL
condition. Note that imposing this condition on the sum f implies that all the components fj
are PL functions. When dealing with PL functions we consider the problem of unconstrained
minimization and we introduce the notation

f∗ = min
x∈Rd

f(x).

In what follows, for any positive integer n we denote by [n] the set of positive integers less than or
equal to n.

Theorem 1. Let α > 0, β � 2 and L̄, L > 0. For j ∈ [d], let fj : R → R be such that
fj ∈ F ′

2(L̄) ∩ Fβ(L). Assume that f : Rd → R has the form f(x) =
∑d

j=1 fj(xj), and that f is

an α-PL function. Let Assumption 1 hold, and let {xt}Tt=1 be the updates of Algorithm 1 with
Θ = R

d, and

ηt = min
( 4

αt
,

1

18L̄dκ

)
,

ht =

(
3L̄

α
· κσ2

L2κ2β

) 1
2β

·

⎧⎪⎪⎨⎪⎪⎩
t−

1
2β if ηt =

4

αt
,

T− 1
2β if ηt =

1

18L̄dκ
.

Then,

E [f(xT )− f∗] � 144L̄dκ

αT
(f(x1)− f∗) +

d

α

⎛⎝A1

(
L̄

αT

)β−1
β

+ A2
L̄3d

T

(
L̄

αTL2

) 1
β

⎞⎠ ,

where A1,A2 > 0 depend only on β and σ2.

Corollary 1. Under the conditions of Theorem 1, if T � (L̄/α)((L̄2dα)
β
2 /L), then

E [f(xT )− f∗] � 144L̄dκ

αT
(f(x1)− f∗) + A

d

α

(
L̄

αT

)β−1
β

,

where A > 0 depends only on β and σ2.
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The bounds of Theorem 1 and Corollary 1 show how the rate of convergence depends on the
parameters T, d and α but also on the aspect ratio L̄/α. Moreover, in Corollary 1 the condition
T � Cdβ/2, where C > 0 is a constant, does not bring an additional restriction when 2 � β � 3
since the condition is weaker than giving the range of T , for which the bound makes sense. Indeed,
for 2 � β � 3 the bound is greater than a constant independent of T, d if T � Cdβ/2.

Next, we study the optimization error of the algorithm defined in Section 2 under the assumption
that the objective function is α-strongly convex. Unlike the case of PL functions, we consider here
the problem of constrained minimization

min
x∈Θ

f(x),

where Θ is a compact convex subset of Rd.

Theorem 2. Let α > 0, β � 2 and L̄, L > 0. For j ∈ [d], let fj : R → R be such that fj ∈ F ′
2(L̄)∩

Fβ(L). Assume that f : Rd → R has the form f(x) =
∑d

j=1 fj(xj), and that f is an α-strongly

convex function on a compact convex subset Θ of R
d such that maxx∈Θ ‖∇f(x)‖ � G. Let As-

sumption 1 hold, and let {xt}Tt=1 be the updates of Algorithm 1 with

ηt =
4

α(T + 1)
, ht =

(
3

2t

κσ2

κ2βL
2

) 1
2β

.

Consider the weighted estimator

x̄T =
2

T (T + 1)

T∑
t=1

txt.

Then, for any x ∈ Θ we have

E [f(x̄T )− f(x)] � 18G2d

αT
+

d

α

(
A1L

2
β + A2dL̄

2(LT )
− 2

β

)
T
−β−1

β ,

where A1,A2 > 0 depend only on β and σ2.

Corollary 2. Under the conditions of Theorem 2, if T � (dL̄)β/2L−2 then

E
[
f(x̄T )−min

x∈Θ
f(x)

]
� A

d

α
T−β−1

β ,

where A > 0 does not depend on T, d and α.

Similarly to Corollary 1, we may note that that for 2 � β � 3 the condition T � Cdβ/2 in Corol-
lary 2, where C > 0 is a constant, does not bring an additional restriction but indicates the mean-
ingful range of T since the bound is greater than a constant when T � Cdβ/2.

Remark 1. In view of strong convexity, Theorem 2 and Corollary 2 immediately imply the
corresponding bounds on the estimation error E[‖x̄T − x∗‖2], where x∗ is the minimizer of f on
Θ. Thus, under the assumptions of Corollary 2 we have

E[‖x̄T − x∗‖2] � 2A
d

α2
T
−β−1

β ,

where A > 0 is the constant from Corollary 2.
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It follows from Corollary 2 and the proofs of the lower bounds in [1, 2] that, under non-restrictive

conditions on the parameters of the problem, the rate d
αT

−β−1
β in Corollary 2 is minimax optimal

on the class of additive functions f satisfying the assumptions of Theorem 2. The lower bound that
we need is not explicitly stated in [1, 2] but follows immediately from the proofs in those papers
since the lower bounds in [1, 2] are obtained on additive functions. For completeness, we provide
here the statement of the lower bound for additive functions based on [1].

Consider all strategies of choosing the query points as zt = Φt
(
(zi, yi)

t−1
i=1 , (z

′
i, y

′
i)
t−1
i=1 , τt

)
and

z′
t = Φ′

t

(
(zi, yi)

t−1
i=1 , (z

′
i, y

′
i)
t−1
i=1 , τt

)
for t � 2, where Φt’s and Φ′

t’s are measurable functions,
z1,z

′
1 ∈ R

d are any random variables, and {τt} is a sequence of random variables with values
in a measurable space (Z,U), such that τt is independent of

(
(zi, yi)

t−1
i=1 , (z

′
i, y

′
i)
t−1
i=1

)
. We denote

by ΠT the set of all such strategies of choosing query points up to t = T . The class ΠT includes
the sequential strategy of the algorithm of Section 2 with the gradient estimator (4). In this case,
τt = rt, zt = xt + htrt and z′

t = xt − htrt.

The lower bound of [1] that we are using here is proved under the following assumption on the
noises (ξ, ξ′t). Let H2(·, ·) be the squared Hellinger distance defined, for two probability measures
P,P′ on a measurable space (Ω,A), as

H2(P,P′) �
∫
(
√

dP−
√

dP′)2 .

Assumption 2. For every t � 1, the following holds:

• The cumulative distribution function Ft : R
2 → R of random variable (ξt, ξ

′
t) is such that

H2(PFt(·,·), PFt(·+v,·+v)) � I0v
2 , |v| � v0, (5)

for some 0 < I0 < ∞, 0 < v0 � ∞. Here, PF (·,·) denotes the probability measure corresponding
to the c.d.f. F (·, ·).

• The random variable (ξt, ξ
′
t) is independent of ((zi, yi)

t−1
i=1, (z

′
i, y

′
i)
t−1
i=1, τt).

Let Θ = {x ∈ R
d : ‖x‖ � 1}. Fix α,L, L̄ > 0, G > α, β � 2, and denote by F the set of all func-

tions f that satisfy the assumptions of Theorem 2 and attain their minimum over Rd in Θ.

Theorem 3. Let Θ = {x ∈ R
d : ‖x‖ � 1} and let Assumption 2 hold. Assume that α >

T−1/2+1/β and T � dβ. Then, for any estimator x̃T based on the observations ((zt, yt), (z
′
t, y

′
t), t =

1, . . . , T ), where ((zt,z
′
t), t = 1, . . . , T ) are obtained by any strategy in the class ΠT we have

sup
f∈F

E
[
f(x̃T )−min

x∈Θ
f(x)

]
� C

d

α
T
−β−1

β , (6)

where C > 0 is a constant that does not depend of T, d, and α.

Theorem 3 follows immediately from the proof of Theorem 22 in [1] since the family of functions
used there belongs to the class F . The lower bound of Theorem 22 in [1] has the form

Cmin

(
max(α, T−1/2+1/β),

d√
T
,
d

α
T−β−1

β

)
,

which reduces to C d
αT

−β−1
β under the assumptions on T, d and α used in Theorem 3.

Remark 2. Since the strong convexity and the PL property hold for each additive component
of f , another possible approach would be to run the procedure component-wise (minimize separately
each component fj). However, it leads to a worse result. Indeed, in this case we need to make at
each step 2d queries in parallel (two queries for each component) and thus can make only ∼ T/d
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824 AKHAVAN, TSYBAKOV

steps if the total budget of queries is T . At the end, applying Theorems 1 or 2 in the one-dimensional
case, for each component we obtain the error in T and d of the order (T/d)−(β−1)/β . This rate
cannot be improved as follows from the one-dimensional instance of Theorem 3. Summing up over
the d components, the overall error will be of the order d(T/d)−(β−1)/β = d2−1/βT−(β−1)/β , that is,
the error will depend on d in a sub-optimal way.

4. PROOFS

We start by proving some auxiliary lemmas.

Lemma 1. Let f : Rd → R be a differentiable function such that ‖∇f(x)−∇f(x′)‖ � L̄‖x− x′‖
for all x,x′ ∈ R

d, where L̄ > 0. Let Assumption 1 hold and let {xt}Tt=1 be the updates of Algo-
rithm 1 with Θ = R

d. Then, for all t ∈ [T ] we have

E [f(xt+1)|xt] � f(xt)− ηt
2
‖∇f(xt)‖2 + ηt

2
‖E [gt|xt]−∇f(xt)‖2 + L̄η2t

2
E

[
‖gt‖2|xt

]
. (7)

Proof. The assumption on f implies that

f(xt+1) = f(xt − ηtgt) � f(xt)− ηt〈∇f(xt),gt〉+ L̄η2t
2

‖gt‖2.

By adding and subtracting ηt‖∇f(xt)‖2 we obtain

f(xt+1) � f(xt)− ηt‖∇f(xt)‖2 − ηt〈∇f(xt), gt −∇f(xt)〉+ L̄η2t
2

‖gt‖2.
Taking the conditional expectation gives

E [f(xt+1)|xt] � f(xt)− ηt‖∇f(xt)‖2 − ηt〈∇f(xt), E [gt|xt]−∇f(xt)〉+ L̄η2t
2

E
[
‖gt‖2|xt

]
� f(xt)− ηt‖∇f(xt)‖2 + ηt‖∇f(xt)‖ ‖E [gt|xt]−∇f(xt)‖+ L̄η2t

2
E

[
‖gt‖2|xt

]
.

The lemma follows by using the inequality 2ab � a2 + b2, ∀a, b ∈ R.

Lemma 2. For j ∈ [d], let fj : R → R be such that fj ∈ Fβ(L), where β � 2 and L > 0. Assume
that f : Rd → R satisfies the additive model f(x) =

∑d
j=1 fj(xj). Let Assumption 1(i) hold. Then,

for all t ∈ [T ] we have

‖E [gt|xt]−∇f(xt)‖ � κβL
√
dhβ−1

t .

Proof. Using Assumption 1(i) for any j ∈ [d] and t ∈ [T ] we have E(K(rt,j)) = 0,
E [ξtK(rt,j)|xt] = 0 and E [ξ′tK(rt,j)|xt] = 0. Thus,

E [gt,j |xt] =
1

2ht
E [(fj(xt,j + htrt,j)− fj(xt,j − htrt,j))K(rt,j)|xt]

+
1

2ht

∑
m	=j

E [(fm(xt,m + htrt,m)− fm(xt,m − htrt,m))K(rt,j)|xt]

=
1

2ht
E [(fj(xt,j + htrt,j)− fj(xt,j − htrt,j))K(rt,j)|xt] ,

where we have used the fact that E(K(rt,j)) = 0 and rt,j is independent of rt,m, for m �= j, and
of xt. From Taylor expansion we obtain that

1

2ht
(fj(xt,j + htrt,j)− fj(xt,j − htrt,j)) = f ′

j(xt,j)rt,j +
1

ht

∑
1�m��,m odd

hmt
m!

f
(m)
j (xt,j)r

m
t,j

+
R(htrt,j)−R(−htrt,j)

2ht
,
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where |R(−htrt,j)|, |R(htrt,j)| � L|rt,j |βhβt . Multiplying both sides of this inequality by K(rt,j) and
taking the conditional expectation implies

|E [gt,j |xt]− f ′
j(xt,j)| � LE

[
|rt,j |βK(rt,j)

]
hβ−1
t = κβLh

β−1
t .

The result of the lemma follows from this inequality and the fact that

‖E [gt|xt]−∇f(xt)‖ �
√
d max
j=1,...,d

|E [gt,j |xt]− f ′
j(xt,j)|.

Lemma 3. For j ∈ [d], let fj : R → R be such that fj ∈ F ′
2(L̄), where L̄ > 0. Assume that

f : Rd → R satisfies the additive model f(x) =
∑d

j=1 fj(xj). Let Assumption 1 hold. Then, for
all t ∈ [T ] we have

E
[
‖gt‖2|xt

]
� 3

2
κd

(
3

4

(
dL̄2h2t + 8‖∇f(xt)‖2

)
+

σ2

h2t

)
.

Proof. For i ∈ [d] we define

Gi = fi(xt,i + htrt,i)− fi(xt,i − htrt,i).

We have

E
[
g2t,j |xt

]
=

1

4h2t
E

⎡⎣( d∑
i=1

Gi + ξt − ξ′t

)2

K2(rt,j)|xt

⎤⎦ .

Note that rt,i and −rt,i have the same distribution. Therefore, E[Gi|xt] = 0 and we can write

E
[
g2t,j |xt

]
� 3

4h2t
E

⎡⎣⎛⎝(
d∑

i=1

Gi

)2

+ ξ2t + (ξ′t)
2)

⎞⎠K2(rt,j)|xt

⎤⎦
� 3

4h2t
E

⎡⎣ d∑
i=1

G2
iK

2(rt,j) +
d∑

i,k=1,i 	=k

GiGkK
2(rt,j)|xt

⎤⎦+
3σ2κ

2h2t

=
3

4h2t
E

[
d∑

i=1

G2
iK

2(rt,j)|xt

]
+

3σ2κ

2h2t
.

Since fi ∈ F ′
2(L̄) we have that, for all i ∈ [d],

G2
i =

((
fi(xt,i + htrt,i)− f(xt,i)− f ′

i(xt,i)htrt,i
)− (

fi(xt,i − htrt,i)− f(xt,i) + f ′
i(xt,i)htrt,i

)
+2f ′

i(xt,i)htrt,i
)2

� 3
((
fi(xt,i + htrt,i)− f(xt,i)− f ′

i(xt,i)htrt,i
)2

+
(
fi(xt,i − htrt,i)− f(xt,i) + f ′

i(xt,i)htrt,i
)2

+4
(
f ′
i(xt,i)htrt,i

)2)
� 3

(
L̄2

2
h4t + 4

(
f ′
i(xt,i)

)2
h2t

)
.

Thus,

E
[
g2t,j |xt

]
� 9

4
κ

(
dL̄2

2
h2t + 4

d∑
i=1

(f ′
i(xt,i))

2

)
+

3σ2κ

2h2t
,

which implies the lemma.
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Lemma 4. For j ∈ [d], let fj : R → R be such that fj ∈ F ′
2(L̄)∩Fβ(L), where β � 2 and L̄, L > 0.

Assume that f : Rd → R satisfies the additive model f(x) =
∑d

j=1 fj(xj). Let Assumption 1 hold.

Assume that {xt}Tt=1 are updates of Algorithm 1 with Θ = R
d and with the gradient estimators

defined by (4). Then, for all t ∈ [T ] we have

E [f(xt+1)|xt] � f(xt)− ηt
2

(
1− 9L̄dκηt

) ‖∇f(xt)‖2

+
ηt
2
d
(
Lκβh

β−1
t

)2
+

3L̄η2t
4

κd

(
σ2

h2t
+

3L̄2d

4
h2t

)
.

Proof. The result follows by combining Lemmas 1, 2 and 3.

Lemma 5. For α > 0 assume that f is an α-strongly convex function. Assume that {xt}Tt=1 are
the updates of Algorithm 1. Then, for all t ∈ [T ] and x ∈ Θ, we have

f(xt)− f(x) � (2ηt)
−1

(
‖xt − x‖2 −E

[
‖xt+1 − x‖2|xt

])
+

1

α
‖∇f(xt)−E [gt|xt]‖2

+
ηt
2
E

[
‖gt‖2|xt

]
− α

4
‖xt − x‖2.

Proof. Fix x ∈ Θ. Then, by the contraction property of the Euclidean projection we have
‖xt+1 − x‖2 � ‖xt − ηtgt − x‖2. Equivalently,

〈gt,xt − x〉 � (2ηt)
−1(‖xt − x‖2 − ‖xt+1 − x‖2) + ηt

2
‖gt‖2.

Let at = ‖xt − x‖2. Since f is an α-strongly convex function we have

f(xt)− f(x) � 〈∇f(xt),xt − x〉 − α

2
at

= 〈gt,xt − x〉+ 〈∇f(xt)− gt,xt − x〉 − α

2
at

� (2ηt)
−1(at − at+1) + 〈∇f(xt)− gt,xt − x〉+ ηt

2
‖gt‖2 − α

2
at.

Taking the conditional expectation given xt and using the inequality ab � a2/λ + λb2/4 valid for
all a, b ∈ R and λ > 0 we deduce that

f(xt)− f(x) � (2ηt)
−1(at −E [at+1|xt]) + 〈∇f(xt)−E [gt|xt] ,xt − x〉+ ηt

2
E

[
‖gt‖2|xt

]
− α

2
at

� (2ηt)
−1(at −E [at+1|xt]) + ‖∇f(xt)−E [gt|xt]‖ ‖xt − x‖+ ηt

2
E

[
‖gt‖2|xt

]
− α

2
at

� (2ηt)
−1(at −E [at+1|xt]) +

1

α
‖∇f(xt)−E [gt|xt]‖2 + ηt

2
E

[
‖gt‖2|xt

]
− α

4
at.

Proof of Theorem 1. Since ηt � 1/(18L̄dκ) from Lemma 4 we have

E [f(xt+1)|xt] � f(xt)− ηt
4
‖∇f(xt)‖2 + ηt

2
d
(
Lκβh

β−1
t

)2
+

3L̄η2t
4

κd

(
σ2

h2t
+

3L̄2d

4
h2t

)
.

Taking the expectation from both sides of this inequality and using the fact that f is an α-PL
function we obtain

δt+1 � δt

(
1− ηtα

2

)
+

ηt
2
d
(
Lκβh

β−1
t

)2
+

3L̄η2t
4

κd

(
σ2

h2t
+

3L̄2d

4
h2t

)
, (8)
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where δt = E [f(xt)− f∗]. Let T0 =
⌊
72L̄dκ/α

⌋
. Note that

ηt =

⎧⎪⎪⎨⎪⎪⎩
1

18L̄dκ
if t < T0,

4

αt
if t � T0.

We consider separately the cases T > T0 and T � T0.

If T > T0, then for t � T0 we have ηt = 4/(αt) and we can write

δt+1 � δt

(
1− 2

t

)
+

d

αt

(
2
(
Lκβh

β−1
t

)2
+

3L̄

αt
κ

(
σ2

h2t
+

3L̄2d

4
h2t

))
.

Substituting here ht = (3L̄αt · κσ2

2L2κ2
β
)

1
2β gives

δt+1 � δt

(
1− 2

t

)
+

d

αt

⎛⎝A3

(
L̄

αt

)β−1
β

+ A4
L̄3d

t

(
L̄

αtL2

) 1
β

⎞⎠ ,

where A3 = 6
(
(2κ2β/3)(κσ

2)β−1
)1/β

and A4 = 9
(
3κσ2/(2κ2β)

) 1
β /4. Since T � T0, applying [1,

Lemma 32] leads to the bound

δT � 2T0

T
δT0+1 +

d

α

⎛⎝ βA1

β + 1

(
L̄

αT

)β−1
β

+
βA2

2β + 1

L̄3d

T

(
L̄

αTL2

) 1
β

⎞⎠ .

If T0 = 0 then the proof is complete for the case T > T0. Otherwise, for any t � T0, we have

ηt = 1/(18L̄dκ) and ht = ( 3L̄αT · κσ2

2L2κ2
β
)

1
2β . Note that

4

(T0 + 1)α
� ηt �

4

T0α
,

and from (8) we deduce that, for all t � T0,

δt+1 � δt

(
1− 2

T0 + 1

)
+

2d

αT0

⎛⎝A3

(
L̄

α

)β−1
β

⎛⎝T
−β−1

β +
T

1
β

T0

⎞⎠+ A4
L̄3d

T0

(
L̄

αTL2

) 1
β

⎞⎠ .

Note that 1 − 2/(T0 + 1) � 1. Thus, by taking into account the definition of T0 and the fact that
T > T0 we get

2T0

T
δt+1 �

144L̄dκ

αT
δ1 +

4d

α

⎛⎝2A3

(
L̄

αT

)β−1
β

+ A4
L̄3d

T

(
L̄

αTL2

) 1
β

⎞⎠ .

Therefore,

δT � 144L̄dκ

αT
δ1 +

d

α

⎛⎝A1

(
L̄

αT

)β−1
β

+ A2
L̄3d

T

(
L̄

αTL2

) 1
β

⎞⎠ ,

where A1 = A3 (β/(β + 1) + 8) and A2 = A4 (β/(2β + 1) + 4).
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Consider now the case T � T0. Then from (8) we get that, for all t � T ,

δt+1 � δt

(
1− 2

T0 + 1

)
+

2d

αT0

⎛⎝A3

(
L̄

α

)β−1
β

⎛⎝T
−β−1

β +
T

1
β

T0

⎞⎠+ A4
L̄3d

T0

(
L̄

αTL2

) 1
β

⎞⎠ .

Thus,

δT+1 � δ1

(
1− 2

T0 + 1

)T

+
2d

α

⎛⎝2A3

(
L̄

αT

)β−1
β

+ A4
L̄3d

T

(
L̄

αTL2

) 1
β

⎞⎠ .

Since (1− λ)T � exp(−λT ) � 1/(λT ) for all T, λ > 0, we deduce from the previous display that

δT+1 �
T0 + 1

2T
δ1 +

2d

α

⎛⎝2A3

(
L̄

αT

)β−1
β

+ A4
L̄3d

T

(
L̄

αTL2

) 1
β

⎞⎠ .

By using the fact that λ+ 1 � 2λ for all λ � 1 we finally get

δT+1 �
2T0

T + 1
δ1 +

2d

α

⎛⎝2A3

(
2L̄

α(T + 1)

)β−1
β

+ A4
2L̄3d

T + 1

(
2L̄

α(T + 1)L2

) 1
β

⎞⎠
� 144L̄dκ

α(T + 1)
δ1 +

d

α

⎛⎝A1

(
L̄

α(T + 1)

)β−1
β

+ A2
L̄3d

T + 1

(
L̄

α(T + 1)L2

) 1
β

⎞⎠ ,

where A1 = 2
3β−1

β A3 and A2 = 2
2β+1

β A4.

Proof of Theorem 2. Fix x ∈ Θ. By Lemma 5 we have

f(xt)− f(x) � at −E [at+1|xt]

2ηt
+

1

α
‖∇f(xt)−E [gt|xt]‖2 + ηt

2
E

[
‖gt‖2|xt

]
− α

4
at,

where at = ‖xt − x‖2. Using Lemmas 2 and 3 and the assumption that maxx∈Θ ‖∇f(x)‖ � G we
obtain

f(xt)− f(x) � at −E [at+1|xt]

2ηt
+

d

α
(κβLh

β−1
t )2 +

3ηt
4

κd

(
3

4

(
dL̄2h2t + 8G2

)
+

σ2

h2t

)
− α

4
at.

Let bt = E
[‖xt − x‖2]. Using the definition ηt = 4/(α(t+1)) and taking the expectation we obtain

E [f(xt)− f(x)] � α

4
(t (bt − bt+1)− bt) +

d

α
(κβLh

β−1
t )2 +

3

2α(t+ 1)
κd

(
3

4

(
dL̄2h2t + 8G2

)
+

σ2

h2t

)
.

Summing up both sides of this inequality form 1 to T and using the fact that

T∑
t=1

t ((t+ 1) (bt − bt+1)− bt) � 0

we find

T∑
t=1

tE [f(xt)− f(x)] � d

α

T∑
t=1

(
t(κβLh

β−1
t )2 +

3t

2(t+ 1)
κ

(
3

4

(
dL̄2h2t + 8G2

)
+

σ2

h2t

))
.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 9 2025



GRADIENT-FREE STOCHASTIC OPTIMIZATION fOR ADDITIVE MODELS 829

Substituting here ht = ( 3
2t

κσ2

κ2
β
L2 )

1
2β yields

T∑
t=1

tE [f(xt)− f(x)] � 9G2dT

α
+

d

α

T∑
t=1

(
A3(L

2t)
1
β + A4dL̄

2
(
L2t

)− 1
β

)
,

where A3 = 2(3κσ2/2)
β−1
β κ

2
β

β and A4 = (1/2) (3/2)
2β+1

β κ
β+1
β (σ/κβ)

2
β . Using the inequality∑T

t=1 t
− 1

β � (β/(β − 1))T
β−1
β we find

T∑
t=1

tE [f(xt)− f(x)] � 9G2dT

α
+

d

α

(
A3L

2
β +

βA4

β − 1
dL̄2(LT )−

2
β

)
T

β+1
β .

Dividing both sides of this inequality by T (T +1)/2 and applying Jensen’s inequality we finally get

E [f(x̄T )− f(x)] � 18G2d

αT
+

d

α

(
A1L

2
β + A2dL̄

2(LT )
− 2

β

)
T
−β−1

β ,

where A1 = 2A3 and A2 = 2βA4/(β − 1).
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